
Transactional Events for ML

Laura Effinger-Dean, Matthew Kehrt and Dan Grossman

Computer Science & Engineering
University of Washington

ICFP 2008, Victoria, BC
September 22, 2008



Motivation

Concurrent ML is a well-known, natural programming model

Concise, elegant encodings
Not powerful enough for some useful protocols!

Transactional events are a powerful extension to CML.

Guarded receive, barriers, and more
Originally implemented in Haskell

We present a design for TE in ML

Major challenge: mutation within transactional events



Contributions

1 Reasonable semantics for mutation within transactional events

2 Formal operational semantics and proof of correctness

3 Implementation in the OCaml compiler/runtime



Outline

1 Background

2 Mutation Within Transactional Events

3 Formal Semantics and Implementation

4 Conclusion



Concurrent ML (Reppy ’92)

First-class events describe communications:

Use sendEvt and recvEvt to communicate over typed channels
chooseEvt combinator describes an event that executes exactly
one of two sub-events

sync actually performs (synchronizes on) an event

Example

Send on c1 or receive on c2:

let foo = chooseEvt
(sendEvt c1 5)
(recvEvt c2)

let _ = sync foo (* perform the event *)



CML: Example

chooseEvt

recvEvt c2sendEvt c1 5

Thread 1

sync



CML: Example

recvEvt c1

Thread 2

sync

chooseEvt

recvEvt c2sendEvt c1 5

Thread 1

sync



CML: Example

recvEvt c1

Thread 2

sync

chooseEvt

recvEvt c2sendEvt c1 5

Thread 1

sync



CML: Example

continue
continue

recvEvt c1

Thread 2

sync

chooseEvt

recvEvt c2sendEvt c1 5

Thread 1

sync



Transactional events

Transactional events (Donnelly and Fluet, ICFP ’06) extend CML
with a sequencing combinator thenEvt.

thenEvt type

val thenEvt : ’a event ->
(’a -> ’b event) -> ’b event

thenEvt succeeds when both sub-events succeed:

Example

let _ = sync (thenEvt (recvEvt c1)
(fun x -> sendEvt c2 x))

Multiple communications per sync.



CML, TE Haskell, and TE ML

CML:
sendEvt
recvEvt

chooseEvt
...

one communication per sync



CML, TE Haskell, and TE ML

TE Haskell:
thenEvt

multiple communications + 
pure computation

CML:
sendEvt
recvEvt

chooseEvt
...

one communication per sync



CML, TE Haskell, and TE ML

TE ML:
pass impure
functions to 

thenEvt

multiple communications +
impure computation

TE Haskell:
thenEvt

multiple communications + 
pure computation

CML:
sendEvt
recvEvt

chooseEvt
...

one communication per sync



TE: Example

An example using both thenEvt and chooseEvt.

thenEvt

recvEvt c1 sendEvt c2 7

thenEvt

chooseEvtsendEvt c1 9

sendEvt c3 8 recvEvt c2



TE: Example

An example using both thenEvt and chooseEvt.

thenEvt

recvEvt c1 sendEvt c2 7

thenEvt

chooseEvtsendEvt c1 9

sendEvt c3 8 recvEvt c2



TE applications

Cleanly express sophisticated communication protocols:

Group two or more communications as a transaction

Guarded receive (difficult in CML)

n-way rendezvous (impossible in CML)



Guarded Receive

Example

let guardedRecv pred c = thenEvt (recvEvt c)
(fun x -> if pred x then alwaysEvt x else neverEvt)

thenEvt

recvEvt pred x ?x

alwaysEvt x neverEvt



Guarded Receive

Problem

What happens if pred modifies the heap, and then returns false?

thenEvt

recvEvt pred x ?x

alwaysEvt x neverEvt



Mutation in transactional events

If we näıvely update the heap:

Visible effects of unsuccessful events
Inconsistent order for heap accesses

In Haskell, none of these problems arise — any function
passed to thenEvt is pure!

Can we use TE in an impure language?



TE for ML

The problem

How should we define the semantics of mutation within
transactional events?



Outline

1 Background

2 Mutation Within Transactional Events

3 Formal Semantics and Implementation

4 Conclusion



Three proposals

We’ll consider three alternatives for mutation within thenEvt.

1 Disallow mutation within transactions.

2 Model mutable locations using CML-style refserver threads.

3 Group the heap accesses of each thread into atomic “chunks.”

Spoiler alert: option 3 is our solution.



Proposal #1

Disallowing mutation

If, at runtime, a transaction attempts to read or write mutable
memory, halt the program with an error.

Pro: Easy to implement

Con: Mutation is unavoidable in ML

Functions with pure interfaces may have hidden side effects
e.g., here the call to fib fails only if fib is memoized:

Example

let evenFibonacciGuard = guardedRecvEvt
(fun x -> fib x % 2 = 0)



Proposal #1

Disallowing mutation

If, at runtime, a transaction attempts to read or write mutable
memory, halt the program with an error.

Pro: Easy to implement

Con: Mutation is unavoidable in ML

Functions with pure interfaces may have hidden side effects
e.g., here the call to fib fails only if fib is memoized:

Example

let evenFibonacciGuard = guardedRecvEvt
(fun x -> fib x % 2 = 0)



Proposal #2

CML-style refservers

Create a new “refserver” thread for each heap location. If a thread
tries to read heap location x, instead receive the current value from
the refserver for x. If a thread writes to x, translate it to a send.



Proposal #2

CML-style refservers

Create a new “refserver” thread for each heap location. If a thread
tries to read heap location x, instead receive the current value from
the refserver for x. If a thread writes to x, translate it to a send.

Thread 1

thenEvt

x := 1

!x



Proposal #2

CML-style refservers

Create a new “refserver” thread for each heap location. If a thread
tries to read heap location x, instead receive the current value from
the refserver for x. If a thread writes to x, translate it to a send.

Thread 1

thenEvt

x := 1

!x

Refserver 
for x

sendEvt write_ch 1

sendEvt read_ch 1

recvEvt write_ch

recvEvt read_ch



Proposal #2

Pro: Straightforward translation, uses existing infrastructure

Con: Guarantees too much
Required to find a successful intereaving if one exists
Programs can abuse this guarantee, e.g.: (r starts at 0)

Example

Thread 1: thenEvt (sendEvt c 0)
(fun _ -> r := 1; r := 0;

alwaysEvt ())
Thread 2: thenEvt (recvEvt c)

(fun _ -> if !r = 1
then alwaysEvt ()
else neverEvt)

Con: Too slow — searches all possible interleavings!



Proposal #3: Chunking

x := 1

!x

recvEvt

Thread 1

sendEvt

sendEvt

Thread 2

recvEvt

x := 2



Proposal #3: Chunking

x := 1

!x

recvEvt

Thread 1

sendEvt

sendEvt

Thread 2

recvEvt

x := 2



Proposal #3

Chunking

A “chunk” is mini-transaction with all of one thread’s heap
accesses between consecutive communications. In the chunking
semantics, every heap access executes as part of a chunk.

Chunking is a good compromise:

Allows mutation

Weaker guarantees than refservers:

Searches fewer possible interleavings
Does not break any useful programs we know of

Much faster than refservers



Outline

1 Background

2 Mutation Within Transactional Events

3 Formal Semantics and Implementation

4 Conclusion



Formal semantics

Formal model of chunking semantics:

High-level, nondeterministic operational semantics

Clear definition of which transactions can succeed

A low-level, (mostly-)deterministic semantics

Models the OCaml implementation

Proof of equivalence between high- and low-level

Formally verified in Coq



Implementation

Prototype implementation by modifying OCaml runtime.

Low-level support for speculatively executing events

Inside transactional events, reads/writes of mutable data use
functional first-class heaps

Interesting details on nested sync, thread-scheduling, . . .



Extensions

See the paper for nested synchronizations, e.g.:

Example

let foo = sync (thenEvt (sendEvt c1 5) (fun _ ->
let x = sync (recvEvt c2);
sendEvt c3 x))

Future work:

Other side effects, e.g. I/O, thread creation, and exceptions
OCaml is not parallel — would transactional events work in a
parallel or distributed setting?



Conclusions

Transactional events are an elegant and powerful abstraction
for concurrent programming.

Our work allows TE to be used in impure languages.

We have presented:

A reasonable semantics for mutation and nested
synchronization within transactions
A formal description of our semantics
An implementation of our semantics in the OCaml runtime



Thank you!

Thanks to our reviewers, to everyone who gave feedback on the
paper and talk, and to Matthew Fluet for his helpful input on this
project.

Questions?

Proof and implementation: http://wasp.cs.washington.edu/tecaml


	Background
	Mutation Within Transactional Events
	Formal Semantics and Implementation
	Conclusion

