
Parameterized Modules for Classes and
Extensible Functions

Keunwoo Lee and Craig Chambers

University of Washington
Department of Computer Science and Engineering

Box 352350, Seattle WA 98195-2350, USA
{klee, chambers}@cs.washington.edu

Abstract. We present F(Eml), a language that combines classes, ex-
tensible functions, symmetric multiple dispatching, and a practical sys-
tem for parameterized modules. Parameterized modules permit subclasses
and function extensions to be defined and typechecked once, and then
reused to extend multiple argument modules. F(Eml)’s predecessor,
Eml, supported classes and extensible functions with multiple dispatch,
but its support for parameterized modules was weak. F(Eml)’s key novel
features are alias declarations, generalized type relations in module sig-
natures, and a nontrivial definition of signature subsumption.

1 Introduction

Programmers should be able to write code so it can later be extended—with new
cases of existing data types, and new cases of existing functions. Programmers
should also be able to write these extensions so they can be reused to extend a
wide range of base modules. Finally, these extensions should support modular
reasoning, including modular typechecking. Unfortunately, it is hard to support
all of these desiderata at once.

Consider the core of an interpreter in a language like Java:

package Lang;
abstract class Expr {
Expr() {}
abstract Int eval(); }

In the classic “expression problem” [35, 41], one wishes to add both new types
of Expr and new functions over Expr types. In object-oriented languages, one
can straightforwardly do the former without changing the original code:

package ConstPackage;
class Const extends Expr {
Int value;
Const(Int v_in) {value=v_in;}
Int eval() {return value;} }

D. Thomas (Ed.): ECOOP 2006, LNCS 4067, pp. 353–378, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

354 K. Lee and C. Chambers

However, to add a new dispatching function for Expr — say, print — we must
invasively alter the original code:

abstract class Expr { ... // as before
abstract String print(); }

class Const extends Expr { ... // as before
String print() { return value.toString(); } }

Traditional functional languages have the converse problem: adding new func-
tions is easy, but adding new cases to data types requires invasive changes, either
to the original source code, or to existing clients.

Previous work on Eml [28] and related languages [27, 10] integrates both
object-oriented and functional extensibility in a single unified framework. These
languages include extensible class hierarchies and method overriding (as in tra-
ditional object-oriented languages), while also allowing functions to be added
externally to classes, and to dynamically dispatch on any subset of their argu-
ments (as in traditional functional languages). In Eml, we would write:

module Lang = { abstract class Expr() of {}
abstract fun eval:Expr -> Int }

It is straightforward to add new data types:

module ConstMod uses Lang = {
class Const(v_in:Int) extends Lang.Expr() of {value:Int = v_in}
extend fun Lang.eval(Const {value=v}) = v }

Note that extends adds a new subclass to an existing class, and extend fun
adds a new (pattern-matching) case to an existing function.

It is also straightforward to add new functions:

module PrintMod uses Lang, ConstMod = {
fun print:Lang.Expr -> String
extend fun print(Lang.Expr) = ""
extend fun print(ConstMod.Const {value=v})= Std.intToString(v) }

Eml therefore supports both data type and function extensibility (with some
restrictions, which is why print has a default case for Expr — see Section 3.2).

Now, we would like it to support code reuse as well. Suppose the interpreter
code base had many features — i.e., expression types, and functions over those
types — and we wished to combine various subsets to produce a product line [24]
of interpreters. In this case, we would like to define a feature once, typecheck it
once, and reuse it to extend several interpreter instances.

Like ML [23, 30, 19, 11], Eml supports functors, or parameterized modules:

signature LangSig = sig { abstract class Expr() of {}
abstract fun eval:Expr -> Int }

Parameterized Modules for Classes and Extensible Functions 355

module MakePlus = (L:LangSig) -> {
class Plus(l_in:Int, r_in:Int) extends L.Expr()

of {left:Int = l_in, right:Int = r_in}
extend fun L.eval(Plus {left=l, right=r}) = L.eval(l)+L.eval(r)}

module PlusMod = MakePlus(Lang)

MakePlus defines a function over modules; it can be applied to any module that
implements LangSig, to produce a module containing a (freshly minted) class
Plus and its eval implementation.

Note that Plus inherits from L.Expr, a class provided by the module para-
meter. In principle, such parameterization supports and subsumes many useful
idioms, including mixins [5, 17] (Plus is a mixin), mixin layers [37] (which apply
mixins to multiple classes at once), and certain aspect-oriented extensions [21]
that extend members of multiple base modules.

However, limitations in Eml prevent it from realizing this potential:

– Eml functors are sensitive to the names of classes and functions in their
arguments. In our example, MakePlus could only be applied to modules with
a class named Expr. However, a truly reusable functor should be insensitive
to inessential details like class names — other mixin systems, for example,
do not constrain the names of classes with which a mixin may be composed.

– Eml’s signature language could only specify direct subclassing relations in
functor arguments. Therefore, for example, it would be impossible to write
an Eml functor that extended a transitive subclass of Expr.

– Eml included no useful form of signature subsumption. Therefore, for ex-
ample, a module that provided all the features of Lang, plus some extra
declarations, would be incompatible with LangSig.

In combination, these limitations meant that Eml functors were not truly
reusable. The contributions of the present work are as follows:

– We have designed F(Eml), a language that combines Eml’s data type
and function extensibility with practical, reusable parameterized modules.
F(Eml) enriches Eml with three key features that lift the above limita-
tions: (1) constructs for renaming declarations, and controlling the aliasing
that results; (2) generalized type relations, including freshness information;
and (3) useful signature subsumption.

– We have formalized the essence of F(Eml) in a core language, Mini-F(Eml).
Section 3 summarizes the semantics and soundness properties; details will
appear in a companion report [22].

– We have implemented a prototype F(Eml) interpreter, and verified that it
can typecheck interesting idioms. Our interpreter also supports some exten-
sions (such as information hiding via signature ascription) which we do not
discuss in this paper.

Finally, Sections 4 and 5 discuss related work and conclude.

356 K. Lee and C. Chambers

2 Motivation and Design Overview

Fig. 1 gives the grammar of a F(Eml) subset which we call F(Eml)
−; except

for shallow syntactic differences, this sublanguage corresponds roughly to Eml.
In the remainder of this section, we informally explain the semantics of this
language using examples (Sections 2.1 and Section 2.2), show its limitations
(Section 2.3), and then present our solution (Section 2.4). We conclude by high-
lighting and motivating a few of F(Eml)’s unusual technical features informally
(Section 2.5) prior to the more formal treatment in Section 3.

Module declarations, expressions, bodies
Md ::= module M uses M = Me

Me ::= { Mb } | (M : Se) -> Me | M(M ′)
Mb ::= [abstract] class c(x : τ) [extends C(e)] of {l : τ ′ = e′}

| fun f : τ# -> τ ′

| extend fun F P = e
| val x = e

Core expressions, patterns, types
e ::= (e) | C (e) | F | e e′ | x | M̂ .x

P ::= (P) | C {L =P} | x [as P] |
τ ::= (τ) | C {L : τ} | τ -> τ ′ | bottom

τ# ::= (τ , τ#
i , τ ′) | #C {L : τ} | C {L : τ, L : τ#, L′ : τ ′}

Signatures
Sd ::= signature S uses M = Se
Se ::= sig { Sb } | (M : Se) -> Se ′ | S

Sb ::= [abstract] class c(τ) [extends C] of {L : τ ′}
| fun f : τ# -> τ ′

| extend fun F τ
| val x : τ

Qualified names, identifiers
M̂ ::= M | ThisMod C ::= M̂.c F ::= M̂.f L ::= M̂.l

S, M, f, c, l, x ::= identifier

Fig. 1. Syntax of F(Eml)
−

2.1 Ground Modules and Declarations

We have already seen examples of ground (non-functor) modules; here, we give
a more systematic description of each construct in Fig. 1. Returning to Lang:
module Lang = { abstract class Expr() of {}

abstract fun eval:Expr -> Int }

This module declaration (Md) declares a new ground module (or structure)
named Lang, having two members (Mb). The first member is a fresh class dec-
laration for an abstract class named Expr, which has the trivial constructor ar-
gument () and the trivial representation {}. Since Expr specifies no superclass,
it is assumed to inherit from the distinguished root class Object.

Parameterized Modules for Classes and Extensible Functions 357

The second member is a fresh function declaration, having the type
Expr -> Int. Note that in Fig. 1, a function’s argument type must be a marked
type τ#, wherein exactly one class type is prefixed by a hash mark #. If no
mark is present, we mark the topmost, leftmost class by default — in this case,
Expr. We explain marked types further Section 3, but intuitively, they statically
constrain future extensions so that they will not be ambiguous with each other.

Next, consider our ConstMod example, slightly extended:

module ConstMod uses Lang = {
class Const(v_in:Int) extends Lang.Expr() of {value:Int = v_in}
extend fun Lang.eval(Const {value=v}) = v
val zero = Const(0) }

This module declares another fresh class Const, a fresh method that extends
eval, and a value binding named zero. Const has a non-trivial constructor
specification with one argument v in of type Int.

Const extends Lang.Expr; the name reference must be qualified with the
module path Lang because it is not a local class.1 All module paths used in a
module body must appear in the uses clause of the enclosing module declara-
tion, or one of the (transitive) uses clauses of used modules. Const also invokes
Lang.Expr’s constructor, passing an argument tuple of appropriate type (in this
case, the empty tuple, but in general any tuple of expressions may appear here).
Finally, Const defines a representation containing one field (in addition to any
inherited fields, although here the superclass has no fields), having label value.2

and type Int. This field is initialized to the value of v in, which is bound in the
constructor argument. As with superclass constructor arguments, field initializ-
ers may be arbitrary expressions.

The fresh method extend fun Lang.eval adds a case to the function eval
in Lang.3 Methods define an argument pattern P , similar in spirit to pattern
matching constructs in functional languages. This method’s pattern is Const
{value=v}, which specifies that this method overrides eval on arguments of class
Const (or any subclass), matching on the value field, and assigning that field’s
value to the variable v, which is bound in the method body expression (patterns
may also be tuples (P), binders x [as P], or wildcards). This method’s body
is v, so it returns the v bound during pattern matching.

Finally, a value binding evaluates a core language expression and binds it to a
name. In the case of the zero binding, the expression is Const(0), which applies
the Const constructor to the single-element argument tuple (0).

The syntax of core language expressions e, from left to right in Fig. 1, is
as follows: tuples (e), which construct tuple values; object constructors C (e),
1 Technically, references to local declarations and standard classes like Object are

automatically qualified with the paths ThisMod and Std respectively.
2 Internally, field labels are qualified by a module name; this is a technical point which,

for presentation purposes, we will ignore in the rest of this paper.
3 Note that Eml, unlike many other object-oriented languages, distinguishes explicitly

between introduction of functions (fun declarations) and overriding of a function by
a method (extend fun declarations).

358 K. Lee and C. Chambers

which construct a fresh value of class C by invoking its constructor with the
argument tuple (e); named function references F ; message sends e e′, which
apply e to e′; local pattern-bound variables x; or val-bound variables M̂.x.

At runtime, a message send dispatches to the globally most-specific case among
all method cases that have been defined for the invoked function. The specificity
relation between method cases is defined by the subtyping relation between the
patterns in their arguments (Section 3.1 gives a formal description of the dispatch
semantics). The dynamic semantics of dispatch give no priority to any particular
position in (the abstract syntax tree of) a method’s argument pattern — i.e.,
dispatching is symmetric.

2.2 Basic Signatures and Functors

Following ML, we call a module interface a signature. A module definition im-
plicitly defines a principal signature (which is generated automatically from the
module by the type system), but F(Eml) also supports explicit interfaces.

Signature body declarations Sb have four cases, paralleling the four basic
kinds of declarations that can appear in a module. Recall our LangSig example:

signature LangSig = sig {
abstract class Expr() of {}
abstract fun eval:Expr -> Int }

This signature has a class signature and a function signature. Class signatures
indicate whether the class is abstract, give the class name and constructor argu-
ment types, the class’s superclass, and a list of field names and types. Function
signatures simply give the function name and type.

The following signature is equivalent to the principal signature generated for
the ConstMod from the previous section:

sig { class Const(Int) extends Lang.Expr of {value:Int}
extend fun Lang.eval(Const {value:Int})
val zero:Const }

Const’s class signature shows that it is a concrete class with a constructor of type
Int and a representation with a single field. A method signature extend fun F τ
names the extended function F (here, Lang.eval) and the argument type τ at
which the method overrides the function (here, Const {value:Int}). A value
signature val x : τ gives the name and type of the bound name.

For this paper’s purposes, the most important use of explicit signatures is to
describe the arguments of parameterized modules. Recall our MakePlus example:

module MakePlus = (L:LangSig) -> {
class Plus(l_in:Int, r_in:Int) extends L.Expr()

of {left:Int = l_in, right:Int = r_in}
extend fun L.eval(Plus {left=l, right=r}) = L.eval(l)+L.eval(r)}

A parameterized module expression begins with a parameter definition (M :
Se), where M is the formal parameter name and Se is a signature expression.

Parameterized Modules for Classes and Extensible Functions 359

In MakePlus, the parameter definition is (L:LangSig); L is the formal para-
meter name, and LangSig is the formal parameter’s signature. The parameter
declaration is followed by an arrow -> and a module expression. As one might
expect, in the module body, declarations specified by the argument signature
are available as names qualified by the formal parameter name.

A functor application M(M ′) applies the module named by M to the argu-
ment M ′. For presentation, we follow Leroy [23] and Harper et al. [18], and limit
functor application expressions to named modules; a practical implementation
would perform “lambda lifting” to allow applications of arbitrary functors to ar-
bitrary argument modules. Informally, the application M(M ′) copies the body
of M to a new module expression Me′ and substitutes M ′ for the formal name in
Me′. For example, MakePlus(Lang) generates the following module expression:

{ class Plus(l_in:Int, r_in:Int) extends Lang.Expr()
of {left:Int = l_in, right:Int = r_in}

extend fun Lang.eval(Plus {left=l, right=r})
= Lang.eval(l) + Lang.eval(r) }

2.3 Problem: Limited Reuse

To explore the limitations of this language, we now examine a more complex
example. Consider Fig. 2. The signature Algebra defines an abstract class Expr
with two concrete direct subclasses, Plus and Times. The MakeDist functor
provides dist, which distributes occurrences of Times over Plus. Notice that
this operation defines four cases. The first case is a default, which leaves other
Expr forms unchanged. One case each is defined for a root expression of Times
with Plus on the left subtree, the right subtree, and both subtrees.

signature Algebra = sig {

abstract class Expr() of {}

class Plus(Expr, Expr) extends Expr of {left:Expr, right:Expr}

class Times(Expr, Expr) extends Expr of {left:Expr, right:Expr} }

module MakeDist = (A:Algebra) -> {

fun dist:A.Expr -> A.Expr

extend fun dist(e as A.Expr) = e

extend fun dist(A.Times { left=(A.Plus {left=l,right=r}), right=r_outer }) =

A.Plus(A.Times(l, r_outer), A.Times(r, r_outer))

extend fun dist(A.Times { left=l_outer, right=(A.Plus {left=l,right=r}) }) =

A.Plus(A.Times(l, l_outer), A.Times(r, l_outer))

extend fun dist(A.Times { left=(A.Plus {left=l,right=r}),

right=(r_outer as A.Plus {left=_, right=_}) }) =

A.Plus(dist(A.Times(l, r_outer)), dist(A.Times(r, r_outer))) }

Fig. 2. The Algebra signature and MakeDist functor

Now, recall that we would like to reuse this extension in many contexts. How-
ever, consider the following reasonable definition of an “algebra”. First, use Lang
and PlusMod as defined in Section 1; finally, define a third module:

360 K. Lee and C. Chambers

module TimesMod uses Lang = {
abstract class DistOp extends Lang.Expr() of {}
class OpTimes(l_in:Lang.Expr, r_in:Lang.Expr)

extends DistOp() of {left:Lang.Expr=l_in, right:Lang.Expr=r_in}
extend fun eval(OpTimes {...}) = ... }

Considered together, Lang, PlusMod, and TimesMod contain all the pieces needed
for an “algebra”, yet they do not constitute an Algebra, for several reasons:

– First, and most obviously, this functor assumes a particular prior modular-
ization strategy. Algebra is the signature of a single module, but in this case
the client chose to factor the declarations into separate modules.

– Second, Algebra requires a declaration named Times, not OpTimes.
– Third, Algebra requires classes that directly extend Expr. OpTimes transi-

tively extends Expr, so again it would be incompatible with Algebra. More
generally, one might wish to specify direct subclassing, strict subclassing, in-
equality, and other relations; for example, inequality constraints might help
prove the non-ambiguity of two methods. However, the language presented
so far cannot express these constraints.

Finally, we note briefly one further problem that is not obvious from the
examples’ syntax, but arises in typechecking. Eml did not permit signature
subsumption; an Eml module could be incompatible with a signature having
fewer declarations, or less-precise information. Hence, even if we bundled all the
declarations in one module and allowed Algebra to accept a transitive subclass
of Expr for Times, the presence of the DistOp class or the eval function would
render the module incompatible with Algebra. Clearly, this greatly reduces the
utility of MakeDist. This was not merely an oversight in the Eml design; as we
shall see in Section 3, signature subsumption turns out to be rather tricky.

2.4 Solution: An Enriched Language

The limitations described in the previous section share a common theme: the ar-
gument signature makes the functor depend on inessential details of the extended
code. Our solution is to enrich the language so as to remove these dependencies
— either by generalizing the signature language, or by letting the programmer
“adapt” a potential argument to the required signature.

The enriched grammar is shown in Fig. 3. Note that we extend the syntax of
module bodies, but replace the syntax of signatures; the signatures in Fig. 1 are
legal, but F(Eml) rewrites them internally into the form shown.

There are three general kinds of changes. First, we add alias declarations ; sec-
ond, we add relation constraints to signatures; third, we enable selective sealing
of class and function declarations. In the rest of this subsection, we discuss these
changes in turn, and then revisit our MakeDist example.

Alias Declarations. Alias declarations define a new module declaration that
aliases an existing declaration rather than creating a new one. An alias class
alias class c = C defines a module member named c that refers to the existing

Parameterized Modules for Classes and Extensible Functions 361

Module expressions and bodies
Mb ::= . . .

| alias class c = C
| alias fun f =F

| alias extend fun F τ in M̂

Signatures
Se ::= sig { Sb fresh φ where ρ } | (M : Se) -> Se ′ | S

Sb ::= [closed] class c [(τ)] of {L : τ} [abstract on F]
| fun f : τ# -> τ ′ open below τ ′′

| extend fun F τ
| val x : τ

φ ::= y ρ ::= r y ::= c | f | q

q ::= F.τ Q ::= M̂.q
r ::= C RC C′ | F RF F ′ | Q RQ Q′

Class, function, method, and type relations
RC ::= � | ⊥ | ≤ | �= | �∩ | < | <0 | <1 | <2 | . . .
RF ::= = | �= RQ ::= = | �=
Rτ ::= � | ⊥ | ≤ | �= | �∩ | < | =

Fig. 3. Syntax of F(Eml) (diff from Fig. 1)

class C. An alias function alias fun f =F defines a member named f that
refers to F . An alias method alias extend fun F τ in M̂ defines an alias for
the method found in module M̂ that extends the function F on type τ . The need
for function and class aliases is relatively straightforward, as we shall see shortly
in Section 2.4; however, the need for method aliases is somewhat technical, and
we postpone further discussion of them to Section 3.

Relation Constraints. There are two kinds of relation information: binary
relations ρ, and freshness information φ.

Binary relations describe the relationships between two declarations. Classes
have the richest language of relations, including general subclassing ≤, inequality
�=, disjointness �∩ (sharing no common subclasses; in ASCII we write disjoint),
strict subclassing <, and k-level subclassing <k (for k ∈ {0, 1, 2, . . .}). <0 is
reflexive subclassing, i.e. equality, and can be written =; <1 is direct subclassing,
and can be written extends. � and ⊥ denote “unknown” and “impossible”
relations respectively; these are a technical convenience permitting certain rules
to be stated more concisely, and we will not discuss them further in this paper.

Class relations serve two purposes. First, they enrich the language of con-
straints that a programmer can describe in a signature. Second, they permit
the programmer to track the aliasing that results from the use of alias classes.
It turns out that typechecking often requires knowledge that two classes, for
example, are not aliases for each other. This second rationale also applies to
functions and methods, so we require relations for these as well; function and
method relations include only aliasing (=) or non-aliasing (�=).

362 K. Lee and C. Chambers

It is impossible for a signature to anticipate all the must-not-alias relation-
ships that future clients might need. Therefore, F(Eml) also tracks freshness
information: when a name appears in the fresh φ portion of a signature, it indi-
cates that the name (which must be bound by the enclosing signature) describes
a fresh declaration and not an alias declaration. When a name appears in a
fresh clause, its referent therefore is known not to alias any other fresh name,
without requiring an explicit �= relation between the two names.

Selective Sealing. Class and function signatures in F(Eml) have additional
clauses, which restrict how they may be used. These restrictions play a key role in
signature subsumption; for the moment we explain only their informal meaning,
postponing the details of how they make subsumption safe to Section 3.

Class signatures change in several ways. First, they may be marked closed,
indicating that clients may not extend them through this signature (although
other aliases of the underlying class may not be marked closed, so closed
is not equivalent to Java’s final). Second, class constructors are optional in
signatures; when the constructor argument type is absent, the constructor is
hidden, and the class may not be instantiated. Third, class signatures may have
an abstract on clause, naming a list of functions that need an implementing
case for this class. Note that functions no longer carry an optional abstract
flag; abstract on replaces abstract on the functions.

Function signatures gain one piece: an open below clause, which names the
extension type of that function. If a function has the signature
fun f : τ# -> τ ′ open below τ ′′, then methods outside of f ’s module can only
extend f on τ if τ is a strict subtype of τ ′′ (again, other aliases of f may have
a more permissive extension type).

A revised Algebra. Fig. 4 gives an alternative definition of the Algebra sig-
nature, and a module that remodularizes the declarations we defined previously
to fit this signature.

signature Algebra = sig {
closed class Expr of {}
closed class Plus(Expr, Expr) of {left:Expr, right:Expr}
closed class Times(Expr, Expr) of {left:Expr, right:Expr}
fresh .
where Plus < Expr, Times < Expr, Plus != Times }

module LangAlgebra uses Lang = {
alias class Expr = Lang.Expr
alias class Plus = PlusMod.Plus
alias class Times = TimesMod.OpTimes }

Fig. 4. Revision of Algebra from Fig. 2, and a module satisfying this signature

If we use this revised Algebra, then both the functor definition MakeDist and
the functor application MakeDist(LangAlgebra)will typecheck. Our fix uses all

Parameterized Modules for Classes and Extensible Functions 363

three of the extensions described previously. First, we use alias declarations to
“repackage” existing declarations so they can be extended by the functor. Sec-
ond, we use generalized class relations to specify exactly the relations needed for
MakeDist to conclude that no two cases of dist are ambiguous with each other.
Third, we seal all the classes in the signature, marking them closed, which con-
stitutes a “promise” that MakeDist’s body will not subclass any of these classes.
This promise is necessary to make Algebra compatible with LangAlgebra, for
a somewhat subtle reason. Consider the signature of LangAlgebra.Expr:

class Expr() of {} abstract on Lang.eval // (1)

because its source class (Lang.Expr) is abstract on eval. But (1) is not com-
patible with (not a valid subsignature of)

class Expr() of {} // (2)

A hypothetical concrete subclass of (2) would not need to implement a case
for eval, whereas any valid concrete subclass of (1) must implement a case for
eval. Hence, valid clients of (2) are not necessarily valid clients of (1).

However, a closed class with a hidden constructor cannot be subclassed or
instantiated, so its signature may freely “forget” about its abstract functions.
Therefore, the signature (1) is a valid subsignature of the following signature
(the absence of the tuple of constructor argument types signifies that the con-
structor cannot be called):

closed class Expr of {} // (3)

because no client can use (3) inconsistently with legal uses of (1).

2.5 Discussion: Unusual Features, and Their Motivation

Before diving into our semantics, we highlight a few forces, arising from certain
design choices, which motivate specific unusual supporting technical features.

First, as previously noted, combining extensibility and symmetric multiple dis-
patch raises the problem of ambiguous function implementation. As a result, our
type relations include inequality, disjointness, and strict subtyping, which can be
used to deduce non-ambiguity of methods. For example, methods that override
a function on disjoint argument types can never apply to the same argument,
and hence cannot be ambiguous. This is unusual because most type systems ei-
ther do not care about distinctness (ML signatures, for example, transmit type
equalities, but not inequalities) or treat inequality only implicitly.

Second, because F(Eml) aims to support modular programming, we cannot
require programmers to list all useful inequality constraints for every class —
for any class C, it may be useful to know that C is distinct from classes that are
not visible or not yet defined at the point of C’s declaration. Therefore, F(Eml)

explicitly tracks the freshness of classes and other declarations, and deduces, for
example, that two fresh class declarations always name distinct classes. This is
unusual because, again, most type systems treat freshness only implicitly.

Third, because F(Eml) permits class and function extension from outside the
original declaration, F(Eml) requires fine-grained selective sealing to restrict the

364 K. Lee and C. Chambers

extensibility of declarations. As we’ve shown in the previous section, sealing is
crucial to signature subsumption. This is unusual because most languages either
lack extensibility, or conflate a construct’s visibility with permission to extend
it, or permit coarse-grained limits on extensibility to express programmer intent
(e.g., Java’s final) but never require it for soundness.

3 Semantics and Typechecking

We have formalized the essence of F(Eml) in a reduced language called Mini-
F(Eml). Actually, the language presented thus far is Mini-F(Eml), except for
the differences in Fig. 5. This grammar also specifies which subsets of module
and core expressions are module language and core language values.

Module values, bodies
Mv ::= { Mb } | (M : Sv) -> Me
Mb ::= . . . ((alias) classes and (alias) functions as before)

| extend fun F with q P = e
| alias extend fun F with q = Q
| ��������val x = e

Signature values, bodies
Sv ::= sig { Sb fresh φ where ρ } | (M : Sv) -> Sv ′

Sb ::= [closed] class c [(τ)] of {L : τ} [abstract on F]
| fun f : τ# -> τ open below τP

| extend fun F with q τP

Core patterns, types, expressions, values
P ::= (P) | C {L =P} | x as P |
τ ::= (τ) | C {} | τ -> τ ′

τP ::= (τP) | C {L : τP } | τ -> τ ′ | bottom
τ# ::= (τ, τ#, τ ′) | #C {}

e ::= (e) | C {L = e} | C (e) | F | e e′ | x

v ::= (v) | C {L = v} | F

Method names (bare and qualified); qualified names; fresh names
q ::= identifier Q ::= M̂.q Y ::= C | F | Q φ ::= Y

Fig. 5. Syntax of Mini-F(Eml) (diff from Fig. 3)

We summarize the changes (made for technical convenience) as follows. First,
in F(Eml), methods do not have names, and are referenced by profile only; in
Mini-F(Eml), for convenience, each method is named by an identifier q. Second,
we omit val bindings, as these can be simulated by functions with a dummy ar-
gument and exactly one case. Third, we eliminate named signature expressions,
and require signatures to be expanded inline. Fourth, the as P clause in bind-
ing patterns is mandatory. Fifth, we separate types into two syntactic kinds: we
restrict first-class types τ to tuples, functions, and class types, with tracking of

Parameterized Modules for Classes and Extensible Functions 365

field types, whereas τP (the type of a pattern) may include more precise infor-
mation about fields. Restricting the type syntax in this manner simplifies our
proof strategy, while still requiring us to deal with the essence of the ambiguity
and incompleteness problems arising from extensibility and multiple dispatch.
Sixth, lists of fresh names φ are fully qualified, and may include method names.
Lastly, we include instances C {L = e} in the grammar of expressions; these are
not available at source level, but arise when defining small-step reduction.

The challenge in designing a type system that is both useful and sound arises
from the combination of F(Eml)’s uniform, symmetric dispatching model and its
powerful extensibility constructs. In Section 3.1, we elaborate on the dynamic se-
mantics of dispatching, focusing on how evaluation can go wrong. In Section 3.2,
we describe typechecking. Section 3.3 states the soundness theorems. The full
formalization of F(Eml) will appear in our companion report [22].

3.1 Linkage and Evaluation

A Mini-F(Eml) program consists of a list of module declarations Md, followed by
a “main expression” e. Execution has two phases: first, Md is linked to produce
a dynamic context Δ, and then e is evaluated in the context of Δ.

Δ is a finite map M �→ Me from module names to (“compiled”) module expres-
sions. Fig. 6 shows a subset of the linkage rules. [x �→ v]e denotes the substitution
of each vi for its respective xi in an expression e.

Δ � Md ⇓∗ Δ′
(Link-Empty)

Δ � ε ⇓∗ Δ

Δ � Md ⇓∗ Δ′ Δ′ � M = Me ⇓ Mv
(Link-Mod)

Δ′ � Md; (module M uses M = Me) ⇓∗ Δ′, M 	→ Mv

Δ � M = Me ⇓ Mv

Δ � M = (M ′ : Sv) -> Me ⇓ (M ′ : Sv) -> Me
(L-Funct)

Δ, ThisMod 	→ { Mb } � dealias({ Mb }) = { Mb′ }
(L-Struct)

Δ � M = { Mb } ⇓ [ThisMod 	→ M]{ Mb′ }

Δ(M) = (M1 : Sv) -> Me1 Me′ = [M1 	→ M ′]Me1 Δ � M0 = Me′ ⇓ Mv′

Δ � M0 = M(M ′) ⇓ Mv′

(L-App)

Fig. 6. Selected linkage rules

Linkage performs three operations. First, it expands functor applications into
module values (L-App); since we restrict applications to named module expres-
sions, we simply substitute the actual argument name for the formal argument
name in the body, and then link the body if necessary. Second, for ground mod-
ules, linkage eliminates references to alias declarations; we omit the definition of
the Δ
 dealias(Me) judgment, but informally, for every name that refers to an

366 K. Lee and C. Chambers

alias, it (transitively) “chases aliases” until it finds a fresh declaration, and re-
places the reference to the alias with a reference to that fresh declaration source.
Third, for structures, linkage rewrites self-references via ThisMod to refer to the
module’s linked name.

Fig. 7 gives the (small-step, operational) semantics of core expression eval-
uation and auxiliary judgments. Execution uses the dynamic context Δ, but
otherwise these rules are exactly analogous to those for Eml [28]. We include
fairly complete rules here for reference, but we will only discuss those parts
absolutely necessary to explain the typechecking problems that follow.

Note that some syntactic sequences with an overbar have a superscripted
range, e.g. v1..n; this is shorthand for v1, . . . , vn. We use the set membership
operator ∈ on syntactic sequences, e.g. Mb ∈ Mb indicates that the Mb is an
element of the sequence Mb. We write Mb ∈ Δ(M) as shorthand for (Δ(M) =
{ Mb }) ∧ (Mb ∈ Mb). We use a long double arrow =⇒ for logical implication,
to distinguish it from → (for small-step evaluation) and ⇒ (for signature gener-
ation, which we will see in in Section 3.2). Superscripted brackets []k around a
part of the rule indicate that those parts are optional, but either all bracketed
portions superscripted with the same k must be present, or all must be absent.

Evaluation uses the dynamic subpattern and subclass relations, which are
given in Fig. 7. Note that these judgments are entirely distinct from the static
relation deduction that we describe later.

Evaluation can get stuck in two cases. First, the program could attempt to
construct a class marked abstract; call this an abstract instantiation error. Sec-
ond, the program could send a message for which Δ
 lookup(F, v) = 〈q, B, e〉 is
not derivable, which can occur in two ways. Informally, the premises of Lookup

specify that there must exist some (fresh) method in Δ such that (1) its pattern
P matches the argument value, and (2) P is strictly more specific than the pat-
terns of all other matching methods in Δ. Therefore, this rule can fail either if
there are zero applicable methods, or if there are multiple applicable methods,
none of which is strictly more specific than all the others. The former case is a
message not understood error; the latter case is an ambiguous message error.

3.2 Typechecking

In this section, we first describe the general structure of typechecking; then, in
later subsections, we describe in more detail those portions of the semantics most
directly relevant to supporting parameterized modules. Fig. 8 summarizes the
major static judgment forms.

A signature context Γ is a finite map from module names M̂ to signature
values Sv; the dependency context D is a finite map from module names M to
depended-upon module names M . The relation context K is a pair 〈φ, ρ〉 where
φ is a set of fresh names and ρ is a set of binary relations. Auxiliary rules used by
these judgments will also use the contexts β (mapping pattern-bound variables
x to types τ) and R (mapping class names C to representations {L : τ}).

The top-level typing judgments (the first two lines in Fig. 8) essentially type-
check each module declaration in Md from left to right (i.e., they construct Γ

Parameterized Modules for Classes and Extensible Functions 367

Δ � e → e′Δ � e1 → e2
(E-App-L)

Δ � e1 e′ → e2 e′
Δ � e1 → e2

(E-App-R)
Δ � v e1 → v e2

Δ � concrete(C)
Δ � rep(C (v)) = {L = e′}

(E-New)
Δ � C (v) → C {L = e′}

Δ � e1 → e2
(E-Rep)

Δ � C {L = v, L = e1, L′ = e′}
→ C {L = v, L = e2, L′ = e′}

Δ � e1 → e2

Δ � (v, e1, e′) → (v, e2, e′)

(E-Tuple)

Δ � lookup(F, v) = 〈q, B, e〉
(E-App-Red)

Δ � F v → [B]e

Δ � concrete(C)
(class c [extends] of { }) ∈ Δ(M)

(Concrete)
Δ � concrete(M.c)

Δ � rep(C (v)) = {L = e}([abstract] class c (x : τ 1..n) [extendsC(e′′)]1

of {L′ : τ ′ = e′}) ∈ Δ(M)
[Δ � rep(C ([x 	→ v1..n]e′′)) = {L = e′′′}]1

(Rep)
Δ � rep(M.c (v1..n)) = {[L = e′′′]1, M.l′ = [x 	→ v1..n]e′}

Δ � lookup(F, v) = 〈q, B, e〉Δ � match(P, v) = B
(extend fun F with q P = e) ∈ Δ(M)

(∀M ′ ∈ dom(Δ).∀(extend fun F with q′ P ′ = e′) ∈ Δ(M ′).
((Δ � match(P ′, v) = B′) ∧ (M.q �= M ′.q′)) =⇒ ((Δ � P ≤ P ′) ∧ ¬(Δ � P ′ ≤ P)))

Δ � lookup(F, v) = 〈q, B, e〉
(Lookup)

Δ � match(P, v) = B

Δ � match(P, v) = B
(Match-Bind)

Δ � match(x as P, v) = x 	→ v, B
(Match-Wild)

Δ � match(, v) = ε

Δ � C′ ≤ C ∀n
i=1.(Δ � match(Pi, vi) = Bi)

(Match-Class)
Δ � match(C {L = P

1..n}, C′ {L = v
1..n

, L′ = v′}) = ∪n
1 B

∀n
i=1.(Δ � match(Pi, vi) = Bi)

(Match-Tuple)
Δ � match((P

1..n
), (v1..n)) = ∪n

1 B
Δ � P ≤ P ′

Δ � P ≤ P ′

Δ � (x as P) ≤ P ′

(PSub-Bind-L)

Δ � P ≤ P ′

Δ � P ≤ (x as P ′)
(PSub-Bind-R)

Δ � P ≤
(PSub-Wild)

∀n
i=1.Δ � Pi ≤ P ′

i

Δ � (P
1..n

) ≤ (P ′1..n
)

(PSub-Tuple)

Δ � C ≤ C′ ∀n
1 i.Δ � Pi ≤ P ′′

i

Δ � C {L = P
1..n

, L′ = P ′} ≤ C′ {L = P ′′1..n}
(PSub-Class)

Δ � C ≤ C′([abstract] class c extends C of { }) ∈ Δ(M)
(CSub-Ext)

Δ � M.c ≤ C

Fig. 7. Dynamic semantics: Evaluation and auxiliary rules

368 K. Lee and C. Chambers

Γ, D � Md ⇒∗ Γ ′, D′ Program typechecking
Γ, D � Md ⇒ M : 〈Sv, M ′〉 Module declaration typechecking
Γ ;M � Me : Sv Module principal signatures
Γ, M � Sv OK arg OK functor argument signature
declRels(Mb) = K Relation context formation
〈Γ, K,Mb〉 � Mb : Sb Signature of a module body decl
〈Γ, K,Mb〉 � Y : 〈M̂,Sb〉 Lookup or compute sig for a name
Γ, M � Mb OK in Sb Module body decl well-formedness
Γ � Sv ≤ Sv′ Signature subsumption
Γ, K,Sb � Sb ≤ Sb′ Sig body decl subsumption
Γ, K,Sb � Sb droppable Sig body width subsumption
K � C1 RC C2 Class relation deduction
K � F1 RF F2 Function relation deduction
K � Q1 RQ Q2 Method relation deduction
K � τ1 Rτ τ2 Type relation deduction
Γ, K, β � e : τ Expression typing
K, R � ptype(P, τ) = 〈τP , β〉 Type and bindings of a pattern
〈Γ,Mb〉 � rep(C) = {L : τ} Class representation lookup

Fig. 8. Static semantics: Selected judgment forms

and D with a left-to-right fold on the module declaration list), so we skip directly
to the “meat” of module expression typechecking, shown in Fig. 9. DN(Mb) is
an auxiliary function that extracts the set of class, function, and method names
introduced in Mb. There are three cases for module expression typechecking:
structures, functors, and functor applications.

For structures, informally, the premises of Mod-Struct specify that: (line
1) the module’s declared names must be unique; (line 2) we extract a “relation
context” K = 〈φ, ρ〉 from the members Mb, and a principal signature can be gen-
erated for Mb; (lines 3-4) in the context enriched by the relation and declaration
signatures, each Mb is well-formed.

For functors, we typecheck the body in the context extended with the for-
mal argument’s signature. Informally, the Sv OK arg judgment checks that the
fresh φ clause in Sv is empty, since declarations in functor arguments are
never fresh (declarations in a functor formal argument are always potentially
aliases).

For functor applications, we check that an alias of the actual argument’s
signature would be subsumed by the formal argument signature. (Informally, the
aliasOf function, whose definition we omit, erases freshness information and adds
equality relations between declarations in the actual and formal parameters.) We
then substitute the actual argument name for the formal name in the signature
body. Notice that we do not need to typecheck the functor body again.

Recall the major technical innovations that F(Eml) adds relative to Eml:
generalized relations, alias declarations, and a non-trivial definition of signature
subsumption. Before describing the mechanics of these features, we must first
show how signatures are constructed, and summarize certain implementation
restrictions inherited from Eml; we do this in the next two subsections. Then,

Parameterized Modules for Classes and Extensible Functions 369

Γ ; M � Me : Sv∀n
1 i.DN(Mbi) ∩ DN(Mb

1..(i−1)
;Mb

(i+1)..n
) = ∅

declRels(Mb
1..n

) = 〈φ, ρ〉 ∀n
1 i.〈Γ, 〈φ, ρ〉,Mb〉 � Mbi : Sbi

Γ ′ = Γ, ThisMod 	→ (sig { Sb
1..n

fresh φ where ρ })
∀Mbi ∈ Mb

1..n
.Γ ′ � Mbi OK in Sb

1..n

(Mod-Struct)
Γ ;M � { Mb

1..n } : sig { Sb
1..n

fresh φ where ρ }

Γ ;M � Sv OK arg
(Γ, M 	→ [ThisMod 	→ M]Sv); (M, M) � Me : Sv′

(Mod-Funct)
Γ ; M � ((M : Sv) -> Me) : ((M : Sv) -> Sv′)

Γ (M1) = (M : Sv1) -> Sv′
1 Γ (M2) = Sv2

Γ � aliasOf(Sv2, M2) ≤ Sv1
(Mod-App)

Γ ; M � M1(M2) : [M 	→ M2]Sv′
1

Fig. 9. Static semantics: Module typechecking

we describe how typechecking must be adjusted to accommodate aliases and
generalized relations. Finally, we summarize our rules for signature subsumption.

Building Signatures. Fig. 10 shows selected rules for generating the signatures
of module body declarations, and the extraction of initial relation information:
fresh declarations generate an element of φ; alias declarations generate equality
relations; and a subclass generates a direct subclassing (<1) relation.

Function signatures (S-Fun) are trivial; the auxiliary function unmark(τ#),
whose definition we omit, simply erases the hash mark from a marked type.

To generate a method signature (S-Method), we first compute a finite map
R from all visible class names C to representation types {L : τ} (informally, the
reps function iterates over all classes in Γ and Mb, and builds the mapping by
accumulating field lists). Then, we compute the type of the argument pattern.
Lastly, we sanity-check that the function to be extended exists. Note that this
last check uses the judgment for signature lookup or computation from Fig. 8;
this looks either in the global context Γ for the signature, or computes the
signature from Mb if it refers to a locally defined name.

Signatures for fresh class declarations are more involved. The premises of
S-Class and S-Abs-Class compute the class’s representation and abstract
functions. Representation computation involves looking up the superclass rep-
resentation (if a superclass is declared) and “copying it down” into the current
class’s signature. Abstract function computation involves looking up all functions
“owned” by this class and checking whether there is a default implementing case;
if no such default exists, then the function is abstract for this class, and must
appear in the class’s abstract on clause. We revisit owners in Section 3.2.

We omit the rules that generate signatures for alias declarations, as they are
verbose but straightforward. Informally, these lookup or compute the signature
of their right-hand side, and then substitute the alias declaration’s name for
the referred-to declaration’s name. For example, for alias class C1 = M.C2,
we would look up the signature of M.C2 in the environment, and C1’s signature

370 K. Lee and C. Chambers

〈Γ, K,Mb〉 � Mb : Sb
unmark(τ#) = τ

(S-Fun)
〈Γ, K,Mb〉 � (fun f : τ# -> τ ′) : (fun f : τ# -> τ ′ open below τ)

R = reps(Γ,Mb) unmark(τ#) = τf K, R � ptype(P, τf) = 〈τP , β〉
〈Γ, K,Mb〉 � M̂.f : 〈M̂, fun f : τ# -> open below 〉

(S-Method)
〈Γ, K,Mb〉 � (extend fun M̂.f with q P = e) : (extend fun M̂.f with q τP)

[〈Γ,Mb〉 � rep(C) = {L′′′ : τ ′′′1..k}]1 〈Γ, K,Mb〉 � abstractFuns(c[, C]1) = ∅
(S-Class)

〈Γ, K,Mb〉 � class c (x : τ1..m) [extends C (e)]1of {l : τ ′′ = e′′1..n}
: class c (τ1..m) of {ThisMod.l : τ ′′1..n

[, L′′′ : τ ′′′1..k
]1}

[〈Γ,Mb〉 � rep(C) = {L′′′ : τ ′′′1..k}]1 〈Γ, K,Mb〉 � abstractFuns(c[, C]1) = F
(S-Abs-Class)

〈Γ, K,Mb〉 � abstract class c (x : τ1..m) [extends C e]1 of {l : τ ′′ = e′′1..n}
: class c (τ1..m) of {ThisMod.l : τ ′′1..n

[, L′′′ : τ ′′′1..k
]1} abstract on F

declRels(Mb) = K

∀n
i=1.fresh(Mbi) = φi ∀n

i=1.rel(Mbi) = ρi 〈φ, ρ〉 = 〈∪n
i=1φi, ∪n

i=1ρi〉
(Decl-Rels)

declRels(Mb1, . . . ,Mbn) = 〈φ, ρ〉

Mb fresh(Mb) rel(Mb)
[abstract] class c() of { } ThisMod.c −
[abstract] class c() extends C() of { } ThisMod.c ThisMod.c <1 C
alias class c = C − ThisMod.c <0 C
fun f : -> ThisMod.f −
alias fun f =F − ThisMod.f = F
extend fun F with q P -> e ThisMod.q −
alias extend fun F with q = Q − ThisMod.q = Q

Fig. 10. Static semantics: Principal signatures (selected rules)

would have the same representation, constructor (if present), and abstract on
clause (if present), but with C1 substituted for C2.

Well-Formedness of Module Declarations. After a module’s principal sig-
nature is generated, each of its declarations is checked for well-formed imple-
mentation (Γ
 Mb OK in Sb). The well-formedness rules contain much that is
standard — for example, part of the well-formedness rule for methods typechecks
the method body in the environment formed by the bindings in the method’s
argument. In this section, we focus only on the (relatively) non-standard require-
ments imposed by the unusual mechanisms of F(Eml) (note that some of these
requirements are adapted with only minor changes from Eml).

Recall, from Section 3.1, the three kinds of dynamic errors: abstract instantia-
tions, messages not understood, and ambiguous messages. Abstract instantiations
can be prevented relatively easily: when typechecking a constructor invocation,
verify that the constructor is visible and that class’s signature does not have an
abstract on clause.

Parameterized Modules for Classes and Extensible Functions 371

However, preventing message-not-understood and ambiguous message errors
is harder, because modular typechecking context does not, in general, contain
all the concrete classes and methods in the program. New subclasses and new
methods can be added by modules that are not visible in any given scope. Hence,
a function may appear to be implemented on all concrete subtypes of its argu-
ment, but other concrete subtypes may still exist; similarly, all the visible cases
of a function may appear to be unambiguous with each other, but other am-
biguous methods may still exist. Therefore, F(Eml) adapts from Eml several
restrictions that, taken together, prevent these errors.

Recall that function argument types must be marked types τ#. Define the
owner position of τ# as the position in its abstract syntax tree that is marked
with a hash #; define a function’s owner as the class at the owner position in its
argument type (note that, unlike a receiver class, the owner is a purely static
notion; dynamic dispatch remains symmetric); and define a method’s owner
as the class at the owner position of the method’s argument pattern’s type.
Then, the following well-formedness conditions must hold for methods, functions,
and classes respectively. First, each method must be defined in either the same
module as its owner, or the same module as the function it extends. Second, for
any function F declared in a different module from its owner, a global default
case (which covers F ’s declared argument type) must be defined in the same
module as F . Third, any concrete subclass C of an abstract class C′ must define
a local default case for each function F that appears in the abstract on clause
of C′’s signature; the local default case for each F must cover the argument type
τ# of F , but with C substituted at the owner position of τ#.

Previous work [28] has shown how the above restrictions intuitively support
(more than) the union of object-oriented and functional styles of extensibility
— they are crafted to permit extension with both (a) new subclasses of existing
classes, and (b) new functions on existing types.

The restrictions above rule out incompleteness errors. To completely rule out
ambiguity errors, we must add one further condition to method well-formedness:
we must check that each method is pairwise unambiguous with all other visible
methods. Informally, two methods are pairwise unambiguous if either: (1) they
extend different functions, (2) they have disjoint argument types, (3) one has
an argument type that strictly subtypes the other’s argument type, (4) their
argument types share a common subtype, for which a disambiguating case exists
that is more specific than both, or (5) they are aliases of the same method.

Finally, F(Eml) imposes one further requirement on function aliases. If a
module M aliases a function F from module M ′, then that M must also contain
aliases of all F ’s methods from M ′. The reason for this is subtle; there are
cases (as we shall see in Section 3.2) when subsumption may not safely hide
a method. Our rules check for these conditions before allowing a method to be
hidden; however, if it were possible to alias functions freely without aliasing their
methods, then those methods would be hidden from clients of the alias function,
bypassing these subsumption conditions and rendering typechecking unsound.

372 K. Lee and C. Chambers

Deducing Relations. We have seen that typechecking requires several kinds of
knowledge about the relationships between classes, types, functions, and meth-
ods. In most object-oriented languages with nominal subtyping — e.g., in Java
— subtyping is the only type relation relevant to typechecking, and the type-
checker computes subtyping by inspecting the actual inheritance graph of classes.
In F(Eml), we can make use of richer information about types — e.g., the fact
that classes are disjoint can be used to prove two methods unambiguous —
and we must also deduce function and method relations. F(Eml) performs all
such deductions with a set of judgments that depend only on a relation context
K = 〈φ, ρ〉. To form this context, we gather the union of all φ and ρ from all
structure signatures sig { fresh φ where ρ } in the range of the context Γ
(during principal signature generation, we also add the initial declRels(Mb), as
computed in Fig. 10), and run the deduction rules in this context.

Fig. 11 gives a sampling of rules for deducing class and type relations. The class
deduction rules should be fairly intuitive upon inspection. Notice that CRel-

Neq implements the rule, mentioned in Section 2.4, that all fresh classes are
known to be distinct from each other. The type deduction rules simply then
“lift” the various class relations to the level of structured types.

K � C1 RC C2K � C1 <i C2 K � C2 <j C3

K � C1 <i+j C3

(CRel-Trans-Count)

C1 RC C2 ∈ ρ

〈φ, ρ〉 � C1 RC C2

(CRel-Lookup)

{M̂.c, M̂ ′.c′} ⊆ φ

(M̂ �= M̂ ′) ∨ (c �= c′)
(CRel-Neq)

〈φ, ρ〉 � M̂.c �= M̂ ′.c′

K � C1 �= C2

K � C1 <k C K � C2 <k C
(CRel-Dis)

K � C1 �∩ C2

K � τ1 Rτ τ2
∀n

i=1.(K � τi ≤ τ ′
i)

(R-Tuple-Sub)
K � (τ1..n) ≤ (τ ′1..n

)

K � C ≤ C′ ∀n
1 i.K � τi ≤ τ ′

i
(R-Class-Sub)

K � C {L : τ
1..n

, L : τ
(n+1)..m} ≤ C′ {L : τ ′1..n}

Fig. 11. Static relation deduction (selected rules)

We do not show function and method relation deduction rules, but these are
straightforwardly parallel to a subset of the class relation rules. For example,
FRel-Lookup looks up a function relation F1 RF F2 in ρ, and FRel-Neq

deduces that all function names in φ refer to (pairwise) distinct functions.

Signature Subsumption and Selective Sealing. To be reusable, a functor
should accept actual arguments whose signatures have “more information than”
its formal argument signature. However, defining signature subtyping is not as
simple as it would seem at first. Intuitively, subsumption hides information from
a client, and unrestricted information hiding would sometimes grant a client
permission to perform actions that would be prohibited by the more informative

Parameterized Modules for Classes and Extensible Functions 373

signature. In particular, hiding a function F on which a class is abstract could
permit a client to create a concrete subclass of that class without providing an
implementing case for F ; and hiding a method Q could permit a client to define
a method that is ambiguous with Q without providing a disambiguating case.

F(Eml)’s signature language therefore contains features that selectively re-
voke the privileges to perform potentially harmful actions — in particular, to
subclass a class, and to extend a function — and permits hiding only when the
client does not possess dangerous privileges. Fig. 12 and gives the subsump-
tion rules that bear directly these problems. Note that relsInContext(Γ) simply
extracts all the relations φ and ρ from each structure signature in Γ . We now
describe how these rules manage the two kinds of potentially unsafe subsumption
we have just mentioned — hiding functions, and hiding method cases.

First, a client can conflict with a hidden function by defining a new subclass
of an abstract class C, while failing to implement the corresponding cases for a
hidden abstract function. Therefore, we cannot both permit a client to subclass
an abstract class, and hide a function on which that class is abstract. Notice that
SB-Closed-Abs only permits abstract functions to be forgotten if the class is
closed, so that clients cannot subclass it (this rule also permits the abstract
on clause to be forgotten entirely, provided the client forgoes the privilege of
invoking the constructor as well). Then, Drop-Fun requires that any dropped
function not be referenced anywhere in the signature (including the abstract
on clause of a class). Taken together, these rules encode the constraint we require
— a client cannot forget about a function and create a concrete subclass of a
class abstract on that function.

Second, a client can conflict with a hidden method by defining a new method
that is ambiguous with the hidden method. Therefore, we cannot both permit a
client to extend a function on some type, and hide a case that may be ambiguous
with that type. Now, recall that a class may not extend a function F from
outside F ’s enclosing module, except on a strict subtype of F ’s extension type.
The Drop-Method rule requires that a method can be hidden only if it extends
a local function on a supertype of its extension type, guaranteeing that future
methods will not be ambiguous with the hidden method. By itself, this rule
would be overly restrictive, since functions use their argument type as the default
extension type (see S-Fun in Fig. 10). However, SB-Seal permits us to seal a
function to a subtype of that function’s original extension type; one can apply
SB-Seal to make a method droppable, and then Drop-Method to hide it.

3.3 Soundness

Previous work [28] established the soundness of Mini-Eml (the formal core of
Eml, analogous to Mini-F(Eml)) via the following standard theorems:

Theorem 1 (Mini-Eml Subject Reduction). Given: (1) ∀Bn ∈ dom(BT).
BT (Bn) OK, (2)
 E : T in the context of BT , and (3) E −→ E′ in the context
of BT , then
 E′ : T ′ for some T ′ such that T ′ ≤ T .

Theorem 2 (Mini-Eml Progress). Given: (1) ∀Bn∈dom(BT). BT (Bn) OK,
(2)
 E : T in the context of BT , and (3) E is not a value, then ∃E′.E −→ E′.

374 K. Lee and C. Chambers

Γ � Sv ≤ Sv′
Γ, K, (Sb; Sb′) � Sb droppable

relsInContext(Γ) = 〈φ′, ρ′〉 K = 〈(φ, φ′), (ρ, ρ′)〉
(Sub-Width)

Γ � sig { Sb; Sb; Sb′ fresh φ where ρ } ≤ sig { Sb; Sb′ fresh φ where ρ }

Γ, K, (Sb; Sb′) � Sb ≤ Sb′

relsInContext(Γ) = 〈φ′, ρ′〉 K = 〈(φ, φ′), (ρ, ρ′)〉
(Sub-Depth)

Γ � sig { Sb; Sb; Sb′ fresh φ where ρ } ≤ sig { Sb; Sb′; Sb′ fresh φ where ρ }

Γ, K, Sb � Sb ≤ Sb′

Γ, K, Sb � class c (τ) of {L : τ} [abstract on F]1

≤ closed class c (τ) of {L : τ} [abstract on F]1

(SB-Close)

[F ′ ⊆ F]1
(SB-Closed-Abs)

Γ, K, Sb � closed class c (τ) of {L : τ} abstract on F

≤ closed class c [(τ)]1 of {L : τ} [abstract on F ′]1

K � τ ′ ≤ τ
(SB-Seal)

Γ, K, Sb � fun f : τ# -> τr open below τ ≤ fun f : τ# -> τr open below τ ′

Γ, K, Sb � Sb droppable(fun f : -> open below τP
f) ∈ Sb

ThisMod.q �∈ freeNames(Sb) K � τP
f ≤ τP

(Drop-Method)
Γ, K, Sb � (extend fun ThisMod.f with q τP) droppable

ThisMod.c �∈ freeNames(Sb)
(Drop-Class)

Γ, K, Sb � ([abstract] class c . . .) droppable

ThisMod.f �∈ freeNames(Sb)
(Drop-Fun)

Γ, K, Sb � (fun f : -> open below) droppable

Fig. 12. Static semantics: Signature subsumption (selected rules)

Here, the “block table” BT is a finite map from block names Bn to blocks (module
values), E is a Mini-Eml core expression, and T is a Mini-Eml type. BT (Bn) OK
denotes the Mini-Eml judgment that the block BT (Bn) is well-formed.
 E : T
denotes that E has the Mini-Eml type T . E −→ E′ is the Mini-Eml small-
step evaluation relation. Now, we define a function � � which translates Mini-
F(Eml) syntax into Mini-Eml: �D; Δ; e� denotes the translation of a compiled
Mini-F(Eml) program into a Mini-Eml program BT ; E, assuming the module
dependency relation D. We then require two extra properties:

Theorem 3 (Well-Formed Translation). If (1) ∅, ∅
 Md ⇒∗ Γ, D, (2) ∅

Md ⇓∗ Δ, and (3) �D, Δ� = BT , then (G1) ∀Bn ∈ dom(BT).BT (Bn) OK.

Theorem 4 (Type Preservation). If (1) ∅, ∅
 Md ⇒∗ Γ, D, (2) ∅
 Md ⇓∗

Δ, (3) �D, Δ; e� = BT ; E, and (4) Γ, ∅, ∅
 e : τ , then (G1)
 E : �τ� in BT .

Provided the above properties hold, it follows that if a Mini-F(Eml) program
typechecks, then its Mini-Eml translation typechecks, and the translated pro-
gram does not go wrong. We working towards completion of the proofs, which
will appear in a companion technical report [22].

Parameterized Modules for Classes and Extensible Functions 375

4 Related Work

As previously mentioned, the direct predecessor to F(Eml) is Eml [28]. A sibling
of Eml is MultiJava [10, 29], which explores many of the same issues and could
be extended with parameterized modules in closely analogous ways. Nice [3]
resembles Eml (though it is built on a different formalism) in providing multiple
dispatch and a form of modular typechecking, without parameterized modules.

A mixin [5, 17] is a class that inherits from a parameter to be provided later.
Bracha and Cook first proposed mixins [5] for a single-dispatch object-oriented
language. Statically typed mixin languages prior to our work generally have
not supported multiple dispatch, or permitted addition of dispatching functions
from outside the receiver class. Traits [36, 38, 32] are a mixin-like multiple in-
heritance mechanism wherein classes can inherit one ordinary superclass and
multiple traits, where traits may not define constructors or state. Traits lan-
guages would still gain additional flexibility if combined with functors: a class
defining constructors and state could (by functorization of the containing mod-
ule) be parameterized by a superclass that also defined constructors and state.

Many languages allow general multiple inheritance, which can support mixin-
like idioms. Multiple inheritance comes with a number of known problems, e.g.,
the “diamond inheritance” problem. Like traditional mixin languages, F(Eml)

sidesteps these problems (with some loss of expressiveness) by offering single
inheritance, plus the alternative composition mechanism of parameterization.

Virtual types (or virtual classes [25]) extend class-level inheritance with over-
ridable type members nested inside classes. Virtual types can statically type-
check many idioms like those supported by parameterized classes and mod-
ules [7, 40, 14]. In languages like gbeta [13], Scala [32], Jx [31], and CaesarJ [2],
virtual types also support family polymorphism [13], an idiom for writing code
that is generic over multiple instantiations of related groups of types. Virtual
and parametric types share deep connections, and we suspect that any given
language feature raises closely analogous issues in either style of system. For
example, if one added multiple dispatch to virtual type systems, then determin-
ing whether a type member could be safely overridden in a subclass might raise
issues like those that F(Eml) encounters in defining subsumption for classes in
functor argument signatures. Conversely, adding family polymorphism support
to F(Eml) might require dependent type mechanisms akin to those in virtual
type systems.

F(Eml)’s functors are inspired by ML’s parameterized module system [19].
Many extensions to ML parameterized modules have been proposed [23, 18, 11],
but none have incorporated extensible data types, extensible functions, and sym-
metric multiple dispatch. OML [34], OCaml [33], and Moby [15] combine ML-
style modules orthogonally with object-oriented classes, but these classes are tra-
ditional receiver-oriented constructs: dispatching methods can only be declared
with their receiver class, and cannot be externally added without modifying the
original declaration. ML≤ [4] generalizes ML datatypes with subtyping and sym-
metric dispatch, but does not support addition of new cases to existing functions
from outside of the extended declaration’s original module. Several proposals

376 K. Lee and C. Chambers

extend ML with mixin modules [12, 20]; these systems do not currently support
subtyping among datatype cases, ruling out object-oriented idioms.

Jiazzi [26] (based on Units [16]) and JavaMod [1] extend Java with parameter-
ized modules that support many idioms, including mixins. These languages only
support single dispatch, so in this sense they are more restrictive than F(Eml);
however, conversely, they support recursive module linkage, which our work does
not (although we believe recursive linkage could be added to F(Eml)). Jiazzi
also supports the addition of dispatching functions externally to a class, through
an open class design pattern, though this requires more advance planning than
in F(Eml), where external functions can be added directly.

Classes in C++ templates [39] can inherit from a template parameter, but
templates do not support separate typechecking of template bodies. Parameter-
ized classes in GJ [6] support separate typechecking, but disallow inheritance
from the type parameter, ruling out idioms like mixins.

5 Conclusions and Future Work

We have described a parameterized module system with several novel features
in the module and signature language. The module language includes aliasing
declarations, which permit potential arguments to be adapted to the naming and
modularization requirements of a parameterized module. The signature language
allows a parameterized module to specify two important kinds of requirements of
its argument: how its declarations are related to each other, and how extensible
the classes and functions must be. These constraints enable the body of the
parameterized module to be typechecked separately from instantiations, even in
the face of extensible classes, extensible functions, and methods with symmetric
multiple dispatching. At the same time, these constraints remain weak enough
to allow the parameterized module to be applied to a wide range of arguments.

In the future, we would like to study relaxing F(Eml)’s modular typechecking
restrictions, along the lines of Relaxed MultiJava [29], to give the programmer
more control over the trade-off between modular typechecking and programming
flexibility. We also think it would be interesting to explore the ideas in this paper
in the context of a virtual type-based system. Finally, we plan to adapt and
implement these ideas in Diesel, a language which adds a module system to an
underlying core language based on Cecil [8, 9].

Acknowledgments. This work has been supported in part by NSF grants
CCR-0204047 and ACI-0203908. We wish to thank Erik Ernst, Todd Millstein,
the University of Washington WASP group, and anonymous reviewers of this
work (and its earlier incarnations) for their invaluable feedback and discussions.

References

1. D. Ancona, E. Zucca. True Modules for Java-like Languages. 15th ECOOP, 2001.
2. I. Aracic, V. Gasiunas, M. Mezini, K. Ostermann. An Overview of CaesarJ. Trans.

on Aspect-Oriented Development I, LNCS 3880 pp. 135-173, Feb. 2006.

Parameterized Modules for Classes and Extensible Functions 377

3. D. Bonniot. Type-checking multi-methods in ML (A modular approach). FOOL 9,
2002.

4. F. Bourdoncle, S. Merz. Type checking higher-order polymorphic multi-methods.
24th POPL, 1997.

5. G. Bracha, W. Cook. Mixin-based Inheritance. In OOPSLA, 1990.
6. G. Bracha, M. Odersky, D. Stoutamire, P. Wadler. Making the Future Safe for the

Past: Adding Genericity to the Java Programming Language. OOPSLA, 1998.
7. K. B. Bruce, M. Odersky, P. Wadler. A Statically safe alternative to virtual types.

12th ECOOP, 1998.
8. C. Chambers. Object-Oriented Multi-Methods in Cecil. 6th ECOOP, 1992.
9. C. Chambers, Cecil Group. The Cecil Language: Specification and Rationale. Univ.

of Washington Technical Report UW-CSE-93-03-05, 1993-2004.
10. C. Clifton, G. T. Leavens, C. Chambers, T. Millstein. MultiJava: Modular Open

Classes and Symmetric Multiple Dispatch for Java. OOPSLA, 2000.
11. D. Dreyer, K. Crary, R. Harper. A Type System for Higher-Order Modules. 30th

POPL, 2003.
12. D. Duggan, C. Sourelis. Mixin modules. In First ICFP, Philadelphia PA, 1996.
13. E. Ernst. Family Polymorphism. 15th ECOOP, June 2001.
14. E. Ernst, K. Ostermann, W. R. Cook. A Virtual Class Calculus. POPL, 2006.
15. K. Fisher, J. Reppy. The design of a class mechanism for Moby. PLDI, June 1999.
16. M. Flatt, M. Felleisen. Units: Cool modules for HOT languages. PLDI, 1998.
17. M. Flatt, S. Krishnamurthi, M. Felleisen. Classes and Mixins. 25th POPL, 1998.
18. R. Harper, M. Lillibridge. A Type-theoretic approach to higher-order modules with

sharing. POPL, 1994.
19. R. Harper, C. Stone. A Type-theoretic interpretation of Standard ML. Carnegie

Mellon Dept. of CS Technical Report CMU-CS-97-147, 1997.
20. T. Hirschowitz, X. Leroy. Mixin modules in a call-by-value setting. European Symp.

on Programming, LNCS 2305, D. Le Metayer, ed., 2002.
21. G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier, J.

Irwin. Aspect-Oriented Programming. 11th ECOOP, 1997.
22. K. Lee, C. Chambers. Parameterized modules for extensible classes and functions.

Univ. of Washington Technical Report UW-CSE-2005-07-01, 2006 (forthcoming).
23. X. Leroy. Manifest types, modules, and separate compilation. 21st POPL, 1994.
24. R. E. Lopez-Herrejon, D. Batory, W. Cook. Evaluating Support for Features in

Advanced Modularization Technologies. 19th ECOOP, 2005.
25. O. L. Madsen, B. Møller-Pedersen. Virtual classes: a powerful mechanism in object-

oriented programming. In Conf. OOPSLA, 1989.
26. S. McDirmid, M. Flatt, W. C. Hsieh. Jiazzi: New age modules for old-fashioned

Java. 16th OOPSLA, pp. 211-222, Tampa Bay FL, 2001.
27. T. Millstein, C. Chambers. Modular Statically Typed Multimethods. 13th ECOOP,

1999.
28. T. Millstein, C. Bleckner, C. Chambers. Modular Typechecking for Hierarchically

Extensible Datatypes and Functions. ACM TOPLAS 26(5):836-889, 2004.
29. T. Millstein, M. Reay, C. Chambers. Relaxed MultiJava: Balancing Extensibility

and Modular Typechecking. In OOPSLA, Oct. 2003.
30. R. Milner, M. Tofte, R. Harper, D. MacQueen. Def. of Standard ML (Revised).

MIT Press, 1997.
31. N. Nystrom, S. S. Chong, A. C. Myers. Scalable Extensibility via Nested Inheri-

tance. OOPSLA, 2004.

378 K. Lee and C. Chambers

32. M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Maneth, S. Micheloud, N. Mihaylov,
M. Schinz, E. Stenman, M. Zenger. An Overview of the Scala Programming Lan-
guage. EPFL Technical Report IC/2004/64. EPFL Lausanne, 2004.

33. D. Rémy, J. Vouillon. Objective ML: a simple object-oriented extension of ML.
24th POPL, 1997.

34. J. Reppy, J. Riecke. Simple objects for Standard ML. 1996 PLDI, 1996.
35. J. C. Reynolds. User defined types and procedural data structures as complemen-

tary approaches to data abstraction. In Programming Methodology, A Collection
of Articles by IFIP WG2.3, D. Gries, ed., Springer-Verlag, 1978.

36. N. Schärli, S. Ducasse, O. Nierstrasz, A. Black. Traits: Composable Units of Be-
havior. 18th ECOOP, LNCS 2743, July 2003.

37. Y. Smaragdakis, D. Batory. Mixin Layers: An Object-Oriented Implementation
Technique for Refinements and Collaboration Designs. ACM TSEM 11(2):215-255,
April 2002.

38. C. Smith, S. Drossopoulou. Chai: Traits for Java-like Languages. ECOOP, 2005.
39. B. Stroustrup. The C++ Programming Language, 3rd Ed. Addison-Wesley, 2000.
40. K. K. Thorup, M. Torgersen. Unifying genericity – combining the benefits of virtual

types and parameterized classes. 13th ECOOP, 1999.
41. Philip Wadler. The Expression Problem. Java-genericity email list, Nov. 1998.

	Introduction
	Motivation and Design Overview
	Ground Modules and Declarations
	Basic Signatures and Functors
	Problem: Limited Reuse
	Solution: An Enriched Language
	Discussion: Unusual Features, and Their Motivation

	Semantics and Typechecking
	Linkage and Evaluation
	Typechecking
	Soundness

	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

